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Integrating the environmental and genetic 
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Both environmental exposures and genetics are known to play important 
roles in shaping human aging. Here we aimed to quantify the relative 
contributions of environment (referred to as the exposome) and genetics 
to aging and premature mortality. To systematically identify environmental 
exposures associated with aging in the UK Biobank, we first conducted 
an exposome-wide analysis of all-cause mortality (n = 492,567) and then 
assessed the associations of these exposures with a proteomic age clock 
(n = 45,441), identifying 25 independent exposures associated with 
mortality and proteomic aging. These exposures were also associated 
with incident age-related multimorbidity, aging biomarkers and major 
disease risk factors. Compared with information on age and sex, polygenic 
risk scores for 22 major diseases explained less than 2 percentage points 
of additional mortality variation, whereas the exposome explained 
an additional 17 percentage points. Polygenic risk explained a greater 
proportion of variation (10.3–26.2%) compared with the exposome for 
incidence of dementias and breast, prostate and colorectal cancers, whereas 
the exposome explained a greater proportion of variation (5.5–49.4%) 
compared with polygenic risk for incidence of diseases of the lung, heart 
and liver. Our findings provide a comprehensive map of the contributions 
of environment and genetics to mortality and incidence of common 
age-related diseases, suggesting that the exposome shapes distinct patterns 
of disease and mortality risk, irrespective of polygenic disease risk.

Human aging is a complex process that initially manifests as subclini-
cal and biological changes that begin to accumulate from mid-life 
onward1–3. These systemic biological changes are major drivers of 
common age-related diseases4–6 and multimorbidity7,8, which in turn 
are the major causes of premature mortality worldwide9. While there 
have been major advancements in understanding the complex genetic 
etiology of age-related diseases, genetic studies show only a modest 
effect of the genome on lifespan10,11. Instead, a strong argument that 
nongenetic environmental factors play a key role in aging and prema-
ture mortality comes from the observation that global human lifespan 

has increased nearly twofold during the past 200 years, while the human 
genome is expected to have been stable in such a short period12,13. Epi-
demiological research has made major progress in relating individual 
environmental and behavioral exposures to age-related diseases and 
mortality, yet few studies have comprehensively examined the expo-
some (that is, the total set of interrelated environmental exposures 
throughout the life course) in relation to these outcomes14,15. In the 
field of genetic epidemiology, the use of genome-wide approaches has 
greatly increased the positive predictive value16 and reproducibility17 of 
findings, in particular for genetic variants conveying small effects on 
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major chronic diseases19,20, there has been no exposome-wide study 
published so far that systematically identifies environmental exposures 
associated with aging biology.

To address these gaps in the literature, we aimed to determine 
the contribution of the exposome to premature mortality and major 
age-related diseases, compared with the contribution of the genome. 
We developed a robust pipeline to address reverse causation and resid-
ual confounding (Fig. 1 shows a summary of the study design). We 
started by conducting an exposome-wide analysis using data from the 
UK Biobank (UKB; n = 492,567) to systematically identify exposures that 
are independently associated with risk of premature mortality and thus 
determine life expectancy. We then conducted a phenome-wide analy-
sis for each mortality-associated exposure to remove exposures sensi-
tive to confounding and mismeasurement. To determine whether these 
exposures contribute to the aging process instead of merely predicting 
death, we further limited exposures to those that are associated with a 
proteomic aging clock that we recently developed in a subset of UKB 
participants (n = 45,441)19. To overcome the strong correlation between 

risk of the outcomes. Although individual genetic variants themselves 
convey a small increase in risk, aggregating these small effects over 
the genome shows that their joint effect can be substantial for various 
complex diseases. Exposome-wide study designs may provide similar 
advancements in the field of epidemiology.

It has been proposed that exposome-wide designs could pro-
vide crucial and systematic insights into the role of environmental 
exposures on aging15. While numerous environmental exposures have 
been previously associated with risk of mortality or with rates of bio-
logical aging in studies focused on smaller sets of exposures, so far no 
large-scale studies have used exposome-wide designs that can account 
for the correlation structure across the exposome to comprehensively 
identify exposures that have independent associations with both aging 
biology and population-level mortality and age-related disease rates. 
Further, the recent development of proteomic-based biological age 
clocks provide the opportunity to accurately characterize and measure 
signatures of aging biology using omics data18. While these proteomic 
age clocks are highly predictive of mortality and incident risk of most 
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Fig. 1 | Study overview. a, After participant exclusions, UKB participants were 
split into independent discovery, replication and validation sets. Missing values 
were imputed separately within each group using random forest multiple 
imputation, resulting in five imputed datasets for each dataset. b, Among UKB 
participants recruited in England (n = 436,891), an exposome-wide association 
study (XWAS) for all-cause mortality was conducted using the discovery and 
replication sets. The discovery and replication sets were then pooled, and further 
analyses were conducted in the full sample to identify and remove replicated 
exposures that were sensitive to reverse causation (disease sensitivity) and 
mismeasurement (PheWAS per exposure). The remaining exposures were then 
tested cross-sectionally for associations with a previously developed proteomic 

aging clock (n = 45,441). We then conducted a final sensitivity analysis in the 
participants recruited in England (n = 436,891) to remove exposures sensitive to 
correlation bias (cluster analysis). c, Exposures surviving all analyses in b were 
then tested in relation to 25 age-related biomarkers, 25 age-related diseases and 
3 common disease risk factors (hypertension, obesity and dyslipidemia). For 
mortality and each age-related disease, the relative contributions of age and sex, 
polygenic risk and exposome were calculated via multivariable Cox proportional 
hazard models. Multivariable models were validated in participants recruited in 
Scotland or Wales (n = 55,676), who were held out from all other analyses. Figure 
created with BioRender.com.

http://www.nature.com/naturemedicine
https://www.biorender.com/


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03483-9

exposures, we developed an approach to decompose confounding 
through hierarchical clustering of exposures. Finally, we assessed the 
effect of the identified environmental exposures in relation to (1) the 
incidence of 25 major age-related diseases, which are either major 
causes of death or highly prevalent in aging populations; (2) patterns 
of 25 biochemical markers for aging and morbidity; and (3) prevalence 
of three major risk factors for various common age-related disorders 
(obesity, hypertension and dyslipidemia). We also quantified the rela-
tive contribution of the exposome versus the genome in explaining 
variation in mortality and age-related diseases.

Results
Mortality and age-related disease rates
This study included 492,567 UKB participants (Fig. 1). All analyses were 
carried out using UKB participants recruited in England (n = 436,891). 
Participants recruited in Scotland/Wales (n = 55,676) were held out as a 
validation set used only to validate final multivariable disease models. 
There were 31,716 deaths from all causes among participants recruited 
in England after a median 12.5 years of follow-up (Table 1). The major-
ity (74.5%) of deaths were premature deaths (that is, occurring before 
75 years of age; Extended Data Fig. 1a). Women had a lower all-cause 
mortality rate compared with men (5.4% in women versus 9.4% in men; 
Table 1). Mortality by cause of death for all participants is given in Sup-
plementary Tables 3 and 4. Key demographic descriptive statistics for 
participants recruited in England are presented in Table 1. Baseline 
descriptive statistics are provided in Supplementary Table 1 for UKB 
participants with no prevalent disease used in sensitivity analyses and 
Supplementary Table 2 for UKB participants recruited in Scotland/
Wales for validation analyses. The number of incident cases for the com-
mon age-related diseases studied in participants recruited in England 
ranged from 856 (brain cancer) to 45,879 (osteoarthritis), as shown in 
Extended Data Fig. 1b and Supplementary Table 5. Summary statistics 
for all cross-sectional outcomes (3 common disease risk factors and 25 
biochemical aging markers) are given in Supplementary Tables 5 and 6.

Exposome-wide analysis of mortality
Exposome-wide association study (XWAS) analyses of all-cause mor-
tality were conducted by serially testing 164 environmental expo-
sures in relation to mortality via Cox proportional hazards models 
in independent discovery and replication subsets of the UKB study 
population (Fig. 1). We limited our investigation of exposures to the 
external exposome only, meaning that internal biochemical responses 
to exposures were not included in our definition of the exposome. 
We further excluded exposures that reflect treatment for an already 
diagnosed disease, such as drug and medication use. No notable dif-
ferences were observed in XWAS regression coefficients when these 
were calculated separately in females and males (Fig. 2a). In a final 
mortality XWAS combining females and males, 110/164 exposures 
(67.1%) were significantly replicated (Fig. 2b). Smoking, renting pub-
lic housing (compared with home ownership) and Townsend depri-
vation index were the exposures most significantly associated with 
increased mortality risk. Living with a partner (compared with living 
alone or with other non-partners), the number of household vehicles, 
being employed and household income were the exposures most 
significantly associated with decreased mortality risk. We further 
conducted sensitivity analyses in which exposome-mortality associa-
tions were re-assessed by (1) excluding participants who died within 
the first 4 years of follow-up and thus may have already had disease at 
the assessment of the exposure (Extended Data Fig. 2) and (2) testing 
interactions between each exposure and a baseline poor health indica-
tor (Extended Data Fig. 3). These led to the exclusion of 15 exposures 
whose associations with mortality were probably completely explained 
by prevalent disease status (Methods), leaving 95 remaining exposures. 
Summary statistics from all mortality XWAS analyses are given in Sup-
plementary Files 3–7.

Detecting residual confounding
For each of the 95 replicated exposures, we conducted a phenome-wide 
association study (PheWAS) where the exposure was treated as the 
outcome variable and regressed against all baseline phenotypes pre-
sent in the UKB using either logistic or linear regression. We detected 
a further ten exposures that associated extremely strongly with either 
(1) disease, frailty or disability phenotypes, or (2) another exposure 
such that it probably does not represent independent information. 
For example, we found that one of the exposures most significantly 
associated with mortality in the XWAS, number of vehicles in a par-
ticipant’s household (mortality hazard ratio (HR) 0.39, P = 5.2 × 10−155), 
was very strongly associated with greater household income (β = 1.1, 
P < 8.1 × 10−12), while inversely associated with living in council housing 

Table 1 | Baseline descriptive statistics for UKB participants 
recruited in England

Female 
(N = 237,634)

Male 
(N = 199,257)

Total 
(N = 436,891)

Age

 Mean (s.d.) 56 (8.0) 57 (8.2) 57 (8.1)

Household income

 Less than 18,000 52,139 (21.9%) 38,416 (19.3%) 90,555 (20.7%)

 18,000–30,999 58,496 (24.6%) 45,827 (23.0%) 104,323 (23.9%)

 31,000–51,999 52,229 (22.0%) 48,178 (24.2%) 100,407 (23.0%)

 52,000–100,000 37,443 (15.8%) 39,514 (19.8%) 76,957 (17.6%)

  Greater than 
100,000

9,742 (4.1%) 10,884 (5.5%) 20,626 (4.7%)

Education years

 7 years 39,642 (16.7%) 33,716 (16.9%) 73,358 (16.8%)

 10 years 46,951 (19.8%) 27,632 (13.9%) 74,583 (17.1%)

 13 years 13,922 (5.9%) 10,134 (5.1%) 24,056 (5.5%)

 15 years 31,779 (13.4%) 20,463 (10.3%) 52,242 (12.0%)

 19 years 30,058 (12.6%) 38,388 (19.3%) 68,446 (15.7%)

 20 years 72,867 (30.7%) 66,742 (33.5%) 139,609 (32.0%)

Ethnicity

 White 223,428 (94.0%) 187,256 (94.0%) 410,684 (94.0%)

 Asian 5,172 (2.2%) 5,344 (2.7%) 10,516 (2.4%)

 Black 4,452 (1.9%) 3,210 (1.6%) 7,662 (1.8%)

 Mixed 1,610 (0.7%) 938 (0.5%) 2,548 (0.6%)

 Other 2,388 (1.0%) 1,737 (0.9%) 4,125 (0.9%)

BMI

 Mean (s.d.) 27 (5.2) 28 (4.2) 27 (4.8)

Smoking status

 Never 141,414 (59.5%) 97,119 (48.7%) 238,533 (54.6%)

 Previous 74,753 (31.5%) 77,122 (38.7%) 151,875 (34.8%)

 Current 20,591 (8.7%) 24,223 (12.2%) 44,814 (10.3%)

Home area population density

 Urban 203,583 (85.7%) 171,299 (86.0%) 374,882 (85.8%)

 Rural 34,051 (14.3%) 27,958 (14.0%) 62,009 (14.2%)

Mortality

 Alive 224,740 (94.6%) 180,435 (90.6%) 405,175 (92.7%)

 Dead 12,894 (5.4%) 18,822 (9.4%) 31,716 (7.3%)

Mortality rates are for the 11- to 15-year study follow-up period. Descriptive statistics are 
calculated using the first imputed analysis dataset and are not pooled across imputed 
datasets. BMI, body mass index.
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versus home ownership (β = −0.98, P < 5 × 10−56) and being unemployed 
due to a disability (β = −0.62, P < 1.4 × 10−245). These findings indicate 
that the association between the numbers of vehicles and mortality 
is probably explained by confounding from socioeconomic and dis-
ability status (Supplementary Fig. 1). All exposures showing evidence 
for residual confounding from PheWAS were discarded, leaving 85 
remaining exposures. Summary statistics from all PheWAS are given 
in Supplementary Files 62–177.

Identifying exposures involved in biological aging
Among the subset of UKB participants with plasma proteomics data 
collected at baseline (n = 45,441), we further tested the associations 
between each of the 85 remaining exposures and an established prot-
eomic age clock19. This clock has been previously demonstrated to asso-
ciate with mortality, 18 major chronic age-related diseases (including 
all the non-cancer diseases and four of the cancers studied here), mul-
timorbidity and aging related phenotypes (for example, frailty index 
and cognitive function). It is therefore a suitable multidimensional 
measure of biological aging that has been demonstrated to capture 
aging biology relevant across the aging outcomes studied here. Spe-
cifically, we tested the association between each of the 85 remaining 
exposures and a proteomic age gap, which represents the difference 
(in years) between a participant’s protein-predicted age and calendar 
age. Exposures either not showing an association with proteomic aging 
or showing an association in the opposite direction from mortality 
were taken to indicate exposures that either do not have an impact on 
aging biology or that probably suffer from residual confounding. Of 
the 85 exposures tested, 57 exposures were discarded as either (1) not 
associated with proteomic aging after false discovery rate (FDR) correc-
tion or (2) associated with proteomic aging and mortality in opposite 
directions of effect. Exposures ruled out during this stage included 
some dietary exposures (intake of alcohol, meat, cereal fiber, salt, mul-
tivitamins and glucosamine supplements), mental health (depressed 
mood, mood swings, irritation and nervousness), air pollution and 
greenspace exposure, and certain social interactions (frequency of 
visiting family and friends or confiding in others and loneliness). This 
left 28 exposures significantly associated (FDR P value < 0.05) with 
both premature mortality and proteomic aging with an effect in the 
same direction for both outcomes (Fig. 2c). Summary statistics for 
proteomic aging analysis are given in Supplementary File 8.

Dimension reduction and adjusting for correlation structure
As expected, we observed high degrees of correlation between expo-
sures replicated in the XWAS, with 90% of variable pairs showing evi-
dence of significant correlation with a Bonferroni-corrected P value 
below 0.001. This indicated that some mortality associations observed 
in the XWAS may be confounded due to this correlation structure or 
multicollinearity. To address this, we used hierarchical clustering 
to organize the 28 exposures that were replicated in the XWAS and 
passed all sensitivity analyses detailed above into seven unique clusters.  
We then conducted multivariable mortality models within each clus-
ter by adding all exposures from the cluster into a single Cox model. 

We discarded exposures that did not pass multicollinearity tests or 
were not significant in this within-cluster model. Using this method, 
we identified 25 exposures that were independently associated with 
mortality (Fig. 3).

Of these 25 exposures that were associated with proteomic aging 
and independently associated with mortality in the cluster multivari-
able analysis, only two were non-modifiable risk factors (Asian/Black/
other ethnicity compared with white, being relatively taller at 10 years 
old compared with being of average height or shorter). The remain-
ing 23 can be considered independent risk factors that are poten-
tially modifiable. Among all significant exposures in the final cluster 
models, the largest protective effect sizes were found for household 
income; being employed; Asian, Black or other ethnicity (compared 
with white); self-reported physical activity (International Physical 
Activity Questionnaires (IPAQ)); and living with a partner (compared 
with living alone or with other nonpartners). All with HRs <0.8. The 
largest detrimental effect sizes were seen for current smokers, living 
in council housing versus home ownership and frequency of feeling 
tired (all with HRs >1.4).

Patterns of multimorbidity and biological mechanisms
To test whether the 25 identified exposures were associated with devel-
opment of age-related disease as part of the pathway to premature mor-
tality, we tested each exposure individually in relation to incidence of 25 
age-related diseases via Cox proportional hazards models (8–15 years 
of follow-up). We further tested each exposure individually in relation 
to patterns of 25 age-related biomarkers and three common disease 
risk factors (hypertension, obesity and dyslipidemia). Each of the 25 
exposures was associated with a wide range of aging biomarkers that 
span diverse organ systems and mechanisms (Fig. 4a). On average, 
each exposure was associated with a total of 22 biomarkers (out of 25). 
Overall, two exposures were associated with all 25 biomarkers (smok-
ing status and ethnicity), two with 24/25 biomarkers (hours of sleep 
and household income) and six with 23/25 biomarkers (frequency of 
feeling unenthusiastic, Townsend deprivation index, home owner-
ship (compared with renting or living rent free), years of education, 
relatively plumper body size at 10 years old (compared with average or 
slimmer) and experiencing financial difficulty in the past 2 years). Meta-
bolic risk factors for various common disorders (obesity, hypertension 
and dyslipidemia) were cross-sectionally associated with nearly every 
exposure studied (Fig. 4b). By design, all exposures were associated 
with proteomic aging (Fig. 4c).

Each of the 25 exposures was also associated with concurrent 
incidence of multiple age-related diseases (Fig. 4d), indicating that 
the exposome is a potential catalyst of disease multimorbidity. On 
average, each exposure was associated with a total of 15 age-related 
diseases (out of 25). Smoking (both current smoking status and pack 
years) was associated with 21 diseases. Household income, Townsend 
deprivation index, home ownership (compared with renting or liv-
ing rent free) and frequency of feeling tired were associated with 19 
diseases. Physical activity, hours of sleep, going to the gym and being 
relatively plumper at 10 years old (compared with average or slimmer) 

Fig. 2 | Environmental architecture of mortality in the UKB. a, The correlation 
(Pearson r) between regression coefficients (beta) for the association between 
each exposure and mortality calculated separately in women (n = 237,637) and 
men (n = 199,257). The P value for the significance of the Pearson correlation 
is also given. b, Volcano plot of log-transformed P values and fold change 
(calculated as log2 of the HR) for all XWAS associations for mortality in the final 
pooled analysis. Each point represents the effect and P value for the association 
between a single exposure and all-cause mortality from a Cox proportional 
hazard model in the XWAS discovery analysis (n = 218,446). Exposures that 
were FDR significant in both the discovery and replication stages are colored, 
whereas associations that were not replicated are indicated in dark gray and 
grouped in the category *nonreplicated. The top 20 points according to P value 

are labeled. c, A heat map of β coefficients representing associations between all 
exposures (only those passing disease and phenome-wide sensitivity analyses) 
and mortality (from the XWAS discovery analysis; n = 218,446) and proteomic 
aging (n = 45,441). d, Importance of individual exposures, as assessed by a 
multivariable model including age, sex and all 26 exposures associated with 
mortality and proteomic aging that passed all sensitivity analyses (n = 436,891). 
The importance of each variable was determined using a Wald test from ANOVA, 
and was calculated as the proportion of that variable’s Wald Χ2 relative to the total 
model Χ2. Note that the y-axis values were transformed by taking the square root 
to improve visualization. Physical activity was measured using the International 
Physical Activity Questionnaire (IPAQ). LTPA, leisure time physical activity; OPA, 
occupational physical activity; PM, particulate matter.
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were associated with 17 diseases. Of note, we found no associations 
between any exposure and incidence of brain cancer. Summary statis-
tics from all biomarker, age-related disease and common disease risk 
factor analyses are given in Supplementary Files 9–33.

We carried out additional sensitivity analyses to interrogate the 
observed association between current smoking and decreased risk 
of incident prostate cancer. This inverse association has been well 
documented in previous studies21–23, and it has been posited that those 
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who do not smoke may be more likely to undergo a prostate-specific 
antigen test and receive a diagnosis, whereas those who smoke may 
be less likely to undergo testing and therefore would be undiagnosed 
or not diagnosed until a much later stage. However, after adjusting for 
and stratifying by prostate-specific antigen test status (Supplementary 
Methods), we found no change in the inverse association observed 
between smoking and prostate cancer (Supplementary Table 12).

Environmental and genetic architectures of aging
To determine the contribution of age and sex, the exposome and 
genome in describing variation in premature mortality and the 25 
studied age-related diseases, we calculated stepwise multivariable 
Cox models beginning with just age and sex (model 1), then adding 
either publicly available polygenic risk scores (PRS) as an approxi-
mation of genetic influence (model 2), or all independent exposures 
associated with the disease as an approximation of the exposome  
(model 3) and finally adding both the exposome and PRS together 
(model 4). The models were fitted among participants recruited in 

England (n = 436,891) and then validated in participants recruited in 
Scotland/Wales (n = 55,676).

Starting with mortality, we observed that, compared with a model 
containing age and sex, adding the PRS for 22 diseases that are either 
major causes of death or common aging phenotypes only increased 
the total mortality model R2 by 2–3 percentage points (pp) (Fig. 5a and 
Extended Data Tables 1 and 2, model 2 versus 1). By contrast, we found 
that adding all 25 independent exposures associated with mortality 
(that is, exposome) to age and sex increased the total mortality model 
R2 by 16–19 pp (model 3 versus 1). Adding the 25 exposome variables to 
the model with age, sex and all PRS increased the total mortality model 
R2 by 14–17 pp (model 4 versus 2). However, adding PRS to a model 
already containing age, sex and the exposome barely increased the 
R2 by less than 1 pp (model 4 versus 3). While the combined effect of 
the exposome explained a large proportion of mortality variation, we 
found that individually most exposures only explained a small propor-
tion of total mortality variation (Fig. 2d).

To test whether we underestimated the genetic influence on mor-
tality and lifespan using this disease PRS approach, we also conducted 
a sensitivity analysis where we further included APOE genotype status 
(using variants rs429358 and rs7412) and a variant in FOXO3 previously 
associated with longevity (rs2802292)24 in model 2 and model 4. We 
found that inclusion of these additional important aging and longev-
ity genetic variants led to virtually no change in our mortality results 
(Supplementary Table 16). Further, to test whether the relative amount 
of variation in mortality explained by disease-related PRS was being 
diluted using all-cause mortality as the outcome, we conducted a sen-
sitivity analysis in which we retested models 2–4 but with the outcome 
being mortality caused by any of the 25 chronic diseases studied here 
instead of all causes. We observed the R2 values for each model to be 
slightly improved compared with the corresponding all-cause mortality 
model. However, we still found that the exposome (model 3) explains 
approximately 14–16 pp greater variance in chronic disease-specific 
mortality compared with model 2 including all PRS together (Sup-
plementary Tables 14 and 15). Furthermore, the addition of PRS on 
top of the exposome model only increased the R2 by approximately  
1 pp (model 4 versus 3).

Models including age and sex, exposome and PRS (model 4) cap-
tured >50% of variation in most outcomes studied in the validation set, 
with the exception of colorectal cancer, pancreatic cancer, leukemia, 
breast and ovarian cancers, lymphoma and osteoarthritis (Fig. 5a and 
Extended Data Tables 1 and 2). For all-cause mortality and all age-related 
diseases studied, the relative importance of age, sex, exposome and 
PRS are shown in Fig. 5b according to the relative proportions of the 
total model chi-squared (Χ2) that each variable category explained in 
model 4. The exposome explained the most of disease variation for lung 
cancer, emphysema/chronic obstructive pulmonary disease (COPD), 
chronic liver diseases and rheumatoid arthritis. Certain outcomes 
seem to be more influenced by polygenic risk than the exposome, such 
as breast and prostate cancers, Alzheimer’s disease (AD), all-cause 
dementia, macular degeneration and colorectal cancer. Last, all-cause 
mortality as well as a number of disorders including esophageal can-
cer, ischemic heart disease and cerebrovascular diseases showed age 
and sex as the most influential determinants, but also showed that 
the exposome explained the majority of the residual variation not 
explained by age and sex.

As a final sensitivity analysis, we attempted to compare the explan-
atory power of the baseline self-reported physical activity variables 
used versus an objective measure of physical activity using acceler-
ometer data available in a subset of UKB participants (n = 103,672; 
Supplementary Methods). Objectively collected total physical activ-
ity explained a greater amount of the mortality variation in our UKB 
sample by 3pp, indicating that our overall estimate of the variation of 
mortality explained by baseline self-reported physical activity meas-
ures underrepresents the total influence of objectively measured 
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physical activity on mortality by only approximately 3pp (Supple-
mentary Table 13).

Discussion
Our study provides the first assessment of the relative contributions 
of environmental and genetic influences on aging. We identify 25 inde-
pendent exposures associated with premature mortality, proteomic 
aging, biochemical markers of aging and age-related diseases. We find 
that the major drivers of premature death and aging in our sample are 
smoking, socioeconomic status and deprivation, ethnicity, physical 
activity, living with a partner, sleep and mental and physical wellness 
including tiredness, as well as early life exposures including height 
and body size at 10 years and maternal smoking around birth. Our 
study shows that the environmental architecture of mortality and 
aging is composed of many interrelated factors, which individually 
may sometimes only capture a small proportion of premature mortality 

variation but when combined additively explain a substantial amount 
of variation for premature mortality, far exceeding that of polygenic 
risk. We further demonstrate that the associations we observed among 
these 25 independent exposures and premature mortality risk and 
proteomic aging are probably not explained by reverse causation or 
residual confounding.

The 25 mortality-associated exposures we identify are associated 
with a common signature of proteomic aging, 24 major age-related 
diseases and their metabolic risk factors and multimorbidity. Our 
results demonstrate that many age-related diseases share a common 
environmental etiology that ultimately leads to premature mortality 
and thus shapes life expectancy. We observed high variability across 
disorders in the contribution of the genome and exposome. Certain 
disorders, such as several cancers (breast, ovarian, prostate and colo-
rectal), AD, all-cause dementia and macular degeneration, were found 
to be predominantly influenced by polygenic risk (that is, the genome) 
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rather than by the exposome, while others, such as cerebrovascular 
diseases, ischemic heart disease, COPD, rheumatoid arthritis and liver 
and kidney diseases showed age, sex and the exposome as the most 
influential determinants.

While numerous previous studies have documented the signifi-
cant roles of physical activity, smoking, sleep and individual socioeco-
nomic status (household income, employment and home ownership 
status) in shaping mortality risk25,26, we provide a more expanded 
picture of the myriad biological mechanisms and disease pathways 
associated with each. Although the key role of physical activity for 
maintaining a healthy body weight has long been recognized, its role 
in aging and life expectancy has been less clear as extreme physical 
activity may increase oxidative stress and thus increase aging27. The 
finding that being shorter at age 10 years is associated with reduced 
proteomic aging and lower risk of mortality is in line with the numerous 
studies suggesting that smaller animals within the same species have 
a higher life expectancy28,29. The finding that being relatively plumper 
at age 10 years and maternal smoking around birth have an impact on 
increased proteomic aging in adulthood and a higher risk of premature 
mortality supports the view that life course prevention of aging is key.

Overall, we found that a large number of mortality-associated 
exposures (66%) were not associated with proteomic aging. Of note, 
nearly all exposures related to self-reported diet (for example, intakes 
of cereal fiber, red meat, fruit and vegetables) and physical environ-
ment (for example, pollution and greenspace) were associated with 

mortality in the XWAS but were not associated with proteomic aging. 
Although the sample size for the proteomic aging study is smaller, 
we have previously shown that this proteomic age clock is a powerful 
predictor of major diseases19. It may be that while these exposures are 
strong determinants of mortality, they may suffer from reverse causa-
tion (that is, people change their diet after developing an illness) or 
the exposures themselves may not be strongly related to aging over 
the life course and work through other pathways. Alternatively, the 
lack of associations between self-reported dietary exposures and 
proteomic aging may reflect confounding or a lack of precision in these  
self-report measures30.

Our research indicates that risk of premature mortality is lower 
for Black, Asian and ‘other’ ethnicities compared with whites in the 
UKB, even after adjustment for a large suite of sociodemographic and 
deprivation factors. This mirrors previous research using national UK 
census and death registration data showing that life expectancy is lower 
for whites compared with all other ethnic groups in the UK31. However, 
these same non-white ethnic groups also tend to live in higher depriva-
tion areas, report poorer self-rated health and report poorer experi-
ences of using health services in the UK32. More research is required to 
understand the factors producing lower mortality risk for UK minori-
ties despite higher levels of deprivation.

There are several limitations to note for our analysis. First, 
despite our prospective study design and careful evaluation of reverse 
causation and confounding, reported associations may not be causal. 
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Although we observed consistent association patterns across dif-
ferent outcomes (mortality, proteomic aging, blood biochemistry 
biomarkers, common disease risk factors and incident diseases) 
and validated our findings in a holdout validation set of participants 
recruited in Scotland/Wales, causality will need to be formally estab-
lished through appropriate study designs. Second, the UKB popula-
tion is healthier and more affluent than the general UK population33, 
and the mortality trends in our population are also not representa-
tive of the general UK population mortality in terms of age at death. 
However, this plays out as a strength of our study since it allows us to 
identify exposures associated with premature mortality. Third, we 
could not capture exposome dynamics across the life course, since 
all exposures were only measured at one time point in the full cohort. 
We also have not captured all possible exposome influences, as we 
were limited to the exposures available in the UKB. Our estimates 
of the proportion of variation in mortality and age-related disease 
explained by the exposome are therefore conservative estimates 
and probably underestimate the full influence of the exposome. Our 
proteomic age clock model only made use of plasma expression of 
roughly 3,000 proteins currently available in the UKB. Future clocks 
built from larger sets of proteins may provide greater coverage of 
age-related biological changes, possibly capturing biology relevant 
for other exposures or diseases.

A further limitation of our approach is that we only systematically 
tested for linear associations. Future research modeling non-linear 
associations of exposures may provide greater precision in describing 
relationships between exposures and health outcomes. We also did 
not test for gene–environment interactions, as although genes and 
environment undeniably have a joint influence on age-related disease, 
these analyses are susceptible to false positive findings34. Last, PRS as 
proxies for the inherited genetic component of each disease are works 
in progress that somewhat underestimate the actual polygenic risk. 
PRS also ignore rare variation in single genes, such as BRCA1/2 and 
the amyloid precursor protein for AD, owing to their low frequency.

Our study also sheds light on a specific roadblock for exposome 
research that we have not resolved: when trying to validate our find-
ings externally in the Rotterdam Study, we were not able to replicate 
many findings from the UKB owing to lack of overlapping exposure 
assessments. Future studies assessing the exposome using blood-based 
biomarkers of exposures may solve this problem, but are beyond the 
scope of the present study.

Despite these limitations, we believe that our approach offers 
many advantages over traditional single exposure approaches in 
epidemiology. While the majority of exposures tested in our analysis 
have already been previously demonstrated to associate with risk of 
mortality, the novelty of our results come from (1) quantifying the con-
tribution of all environmental variables available in the UKB together 
for explaining variation in mortality, aging and major age-related 
diseases, and (2) comparing the contribution of the exposome to 
that of age, sex and the genome using PRS. Setting our study in the 
UKB allowed us to (1) simultaneously study premature mortality and 
proteomic aging; (2) develop a pipeline that addressed the major 
challenges in exposome research (namely reverse causation, correla-
tion confounding and multicollinearity), thus identifying exposures 
that are independently associated with mortality and aging; and (3) 
split the cohort into independent discovery, replication and valida-
tion stages across different populations with sufficient power. When 
compared with the only previously published ‘environment-wide’ 
analysis of mortality35 that focused on a narrower range of chemical 
and lifestyle exposures in a small sample (n = 6,008), our study iden-
tified approximately 17 times more factors associated with all-cause 
mortality and improved the final mortality variance explained (R2) by 
31 times, from 2.1% in the previous study to 66%. This demonstrates 
the importance of using large datasets and testing as broad a range of 
exposome influences as possible.

Overall, our results indicate that environment-focused interven-
tions are possibly the most strategic starting point for ameliorating 
premature mortality and most age-related morbidity, although future 
causal modeling will be needed to study specific exposures of interest. 
Our study underscores that large biobanks, such as the UKB, open the 
door for further targeted proteomic, metabolomic or other omics 
studies to understand the impact of the exposome and disentangle the 
interplay between genetic and environmental exposures in premature 
mortality and aging.
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Methods
Study design and participants
The UKB is a prospective cohort study with extensive genetic and 
phenotype data available for 502,505 individuals resident in the UK36. 
The full UKB protocol37 is available online. All statistical analyses were 
carried out using R v.4.2.2. and PLINK v.2.0.

Exposures
We considered all non-genetic variables available as of 24 July 2020 that 
were collected or derived (for example, air pollution and Townsend 
deprivation index) at baseline, had <80% missing, and were available 
for participants recruited across all assessment centers as potential 
XWAS exposures. After all exclusions, recoding and quality control 
(Supplementary Information and Supplementary Tables 9 and 10), 
176 unique exposures remained that were available in the full cohort 
and were common to both women and men. All continuous exposure 
variables were centered and standardized before analysis, except for 
age at recruitment. All ordinal categorical variables were recoded to 
only test linear associations and other polynomial contrasts (for exam-
ple, quadratic or cubic associations) were not assessed. All nominal 
categorical exposures were analyzed with the most common category 
set as the reference. All ‘mark all that apply’ questions were recoded 
as binary dummy variables. Detailed data dictionaries including all 
exposures used in imputation and XWAS steps are included in Sup-
plementary Files 1 and 2.

Outcomes
Detailed information about the linkage procedure38 with national 
registries for mortality and cause of death information is available 
online. Mortality data were accessed from the UKB data portal on 4 May 
2022, with a censoring date of 30 September 2021 or 31 October 2021 
for participants recruited in England/Scotland or Wales, respectively 
(11–15 years of follow-up).

Procedures for calculating proteomic aging in the UKB were 
described previously19. Aging biomarkers (Supplementary Table 6) 
were measured using baseline nonfasting blood serum samples as 
previously described39. Data on leukocyte telomere length were only 
available in a slightly smaller sample (n = 472,506) than other biomark-
ers and were not imputed. Biomarkers were previously adjusted for 
technical variation by the UKB, with sample processing40 and quality 
control41 procedures described on the UKB website.

Data used to define prevalent and incident cases for chronic dis-
eases and common disease risk factors are outlined in Supplementary 
Table 8. Incident chronic disease diagnoses were ascertained using 
International Classification of Diseases (ICD) diagnosis codes and 
corresponding dates of diagnosis taken from linked hospital inpatient 
records and death register data. ICD-9 and ICD-10 data were accessed 
from the UKB data portal on 30 May 2022, with a censoring date of 
30 September 2021, 31 July 2021 or 28 February 2018 for participants 
recruited in England, Scotland or Wales, respectively (8–15 years of 
follow-up). Breast, ovarian and prostate cancer analyses were carried 
out as sex-specific analyses in female (breast and ovarian) or male 
(prostate) participants.

Missing data imputation
The average percentages of missing data across all final variables 
included in our UKB analysis datasets were 11% in women (range: 0–79%) 
and 10.9% in men (range: 0–77%). UKB participants recruited from Eng-
land were randomly assigned to a discovery (n = 218,446) or replication 
set (n = 218,445) while maintaining the same proportion of mortality 
cases in each. We performed missing data imputation separately in 
the discovery, replication and Scottish/Welsh validation (n = 55,676) 
datasets using the R package missRanger42, which combines random 
forest imputation with predictive mean matching. We imputed five 
datasets, with a maximum of ten iterations for each imputation. We set 

the maximum number of trees for the random forest to 200, but left all 
other random forest hyperparameters at their default. The variables 
used as predictors in the imputation included all baseline, non-nested 
variables, the Nelson–Aalen estimate of cumulative mortality hazard 
and the all-cause mortality event indicator. All subsequent study analy-
ses were run independently in each of the five imputed datasets, and 
results were pooled using Rubin’s rule43.

XWAS
XWAS of all-cause mortality were initially carried out separately 
in women and men, and then a final XWAS was calculated in the 
pooled dataset with both women and men to increase power. Expo-
sures in the final pooled XWAS were limited to those applicable to 
both women and men, omitting sex-specific reproductive factors 
(only tested in the sex-specific XWAS). In each XWAS, we serially 
assessed associations of each individual exposure with all-cause 
mortality using Cox proportional hazards models with age as the 
timescale stratified by 5-year birth cohorts and sex (in the pooled 
analysis only), and adjusted for assessment center, years of educa-
tion (7 years, 10 years, 13 years, 15 years, 19 years and 20 years) and 
ethnicity (white, Asian, Black, mixed or other). For each model, the 
baseline hazards were calculated separately in each of these strata, 
and resulting effect estimates are those that fit best across all strata. 
Since it has been shown that UKB participants are likely to misre-
port alcohol consumption as a function of higher disease burden44, 
self-reported overall health status was added as an additional XWAS 
covariate for the self-reported alcohol intake exposure only. P values 
in the discovery and replication analyses were corrected using the 
FDR (Benjamini–Hochberg method45) with a significance threshold 
of FDR P < 0.05. After completing the mortality XWAS, discovery 
and replication sets were recombined into the full English sample 
(n = 436,891) to complete further sensitivity analyses.

Prevalent disease sensitivity analysis
We conducted a sensitivity analysis in the full sample of participants 
recruited in England (n = 436,891) where we individually tested every 
exposure replicated in the pooled mortality XWAS again in relation 
to mortality using the same XWAS formula and covariates, but now 
adding an interaction term between each exposure and an indicator 
of baseline disease or poor health (see definition below). We flagged 
and removed from further analysis any exposure that no longer had a 
significant direct effect in this model (P < 0.05) but its interaction with 
the baseline poor health indicator was significant (P < 0.05).

The baseline disease/poor health indicator was created for all 
participants, in which participants were coded as having disease or 
poor health at baseline if they (1) had a linked hospital inpatient ICD 
diagnosis for any of the chronic illnesses or common disease risk fac-
tors studied in our analysis (including hypertension, dyslipidemia and 
obesity) with a diagnosis date before or on their date of recruitment 
to the UKB; (2) were assigned a diagnosis code for any of the chronic 
diseases or common disease risk factors studied in our analysis dur-
ing the baseline clinical interview (field IDs 20001 and 20002 in 
Supplementary Table 8); (3) self-reported a physician diagnosis of 
heart attack (field ID 6150), angina (field ID 6150), stroke (field ID 
6150), high blood pressure (field ID 6150), bronchitis/emphysema 
(field ID 6152), diabetes (field ID 2443) or cancer (field ID 2453); (4) 
self-reported ≥1 cancer diagnoses (field ID 134); (5) self-reported tak-
ing insulin medication (field IDs 6153 and 6177), cholesterol lowering 
medication (field IDs 6153 and 6177) or blood pressure medication 
(field IDs 6153 and 6177); or (6) self-reported their overall health status 
as ‘poor’ (field ID 2178).

PheWAS of replicated exposures
For all exposures replicated in the XWAS and not removed during the 
above-described disease sensitivity analyses, a PheWAS was conducted. 

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03483-9

In each PheWAS, the exposure was used as the outcome variable (here-
after referred to as exposure outcomes) and was tested against the 
full set of baseline phenotypes available in the UKB (Supplementary 
File 62 provides the full list of phenotypes tested). Each PheWAS was 
conducted as a linear or logistic regression, depending on whether the 
exposure outcome was continuous or categorical, with covariates for 
age at recruitment and sex. All ordinal exposure outcomes were tested 
as continuous variables. Nominal categorical exposure outcomes were 
recoded into dummy variables for each response category versus the 
reference. All continuous phenotype exposures were scaled and cen-
tered to the mean before running the PheWAS. Summary statistics from 
all PheWAS are available in Supplementary Files 63–178.

Proteomic age clock analyses
We serially assessed associations between each exposure and proteomic 
age gap (the difference in years between plasma protein-predicted age 
and calendar age) using cross-sectional linear regression models with 
covariates for sex, age at recruitment, assessment center, years of 
education and ethnicity. In brief, we previously developed a proteomic 
age clock in a subset of UKB participants (n = 45,441) using a gradient 
boosting machine learning model that takes 204 proteins we identi-
fied and uses them to accurately predict chronological age (Pearson 
r = 0.94)19. In a validation study involving biobanks in China (n = 3,977) 
and Finland (n = 1,990), the proteomic age clock showed similar age 
prediction accuracy (Pearson r = 0.92 and r = 0.94, respectively) com-
pared with its performance in the UKB. The proteomic age clock has 
been previously associated with the incidence of 18 major chronic dis-
eases (including diseases of the heart, liver, kidney and lung, diabetes, 
neurodegeneration and cancer), as well as with multimorbidity and 
all-cause mortality risk.

Correlation and cluster analyses
Correlation between all variables was calculated in the full sample of 
participants recruited in England using the R package polycor46 to 
create a heterogeneous correlation matrix for each imputed dataset. 
Correlation coefficients were first calculated within each imputed 
dataset, transformed to a normally distributed z-score via Fisher’s z 
transformation, pooled via Rubin’s rule and then retransformed back 
to the original r-scale coefficient after pooling. We used hierarchical 
clustering via Euclidean distance to identify the cluster structure of 
exposures replicated in the pooled XWAS and not susceptible to reverse 
causation bias (plus education and ethnicity). We used within-cluster 
sum of squares (WSS) analyses to identify candidates for the optimal 
number of clusters. We first computed the hierarchical clustering of 
exposures for different numbers of clusters (k) ranging from 1 to 25. For 
each k, we then calculated the WSS. We plotted the WSS as a function 
of the number of clusters k, and examined the plot visually to find the 
elbow in the plot (Supplementary Fig. 2). We determined that a seven 
cluster solution was the best approximation of the elbow in the WSS 
curve and represented the most appropriate conceptual groupings of 
exposures. When visually inspecting the dendrogram of hierarchical 
correlation, seven clusters separate the variables very well in terms of 
breaking variables into discrete groups with large distances/heights 
between clusters.

We further conducted multivariable modeling within each of 
these seven clusters using the following procedure: (1) all exposures 
in the cluster were run in a single multivariable mortality Cox model 
to check for multicollinearity using the variance inflation factor. 
Exposures with a generalized variance inflation factor(1/(2×d.f.)) >1.6 
were flagged for collinearity and removed. (2) After any collinear vari-
ables are removed, all remaining exposures in the cluster were tested 
together in a single multivariable mortality Cox model using age as 
the timescale, stratified by 5-year birth cohorts and sex, and adjusted 
for UKB assessment center, household income (less than £18,000, 
£18,000–£30,999, £31,000–£51,999, £52,000–£100,000, greater 

than £100,000), education and ethnicity (if those variables were not 
already in the cluster). Significance in all the cluster multivariable 
models was determined by a nominal P < 0.05.

Aging mechanisms and incident chronic disease analyses
Aging biomarker variables (more details in Supplementary Tables 6 
and 7) were log transformed and then were age-adjusted by regress-
ing each onto age at recruitment separately in women and men. 
Across exposures replicated in the XWAS and passing all sensitivity 
tests, we serially assessed associations between each exposure and 
age-adjusted biomarker using cross-sectional linear regression mod-
els with covariates for sex, 5-year birth cohort, assessment center, 
years of education, ethnicity, number of medications, smoking status 
(current, previous or never) and IPAQ physical activity level (low, 
moderate or high). Insulin-like growth factor 1 (IGF-1), leukocyte 
telomere length and vitamin D models included additional covariates 
for standing height (in cm), leukocyte count (109 cells per liter) and 
month of biomarker assessment (to control for seasonality of sun 
exposure), respectively.

For chronic disease analyses, we serially assessed associations 
between each exposure (replicated in the mortality XWAS and surviv-
ing the disease sensitivity and cluster modeling stages) and incident 
disease using a Cox proportional hazards model, with all XWAS covari-
ates plus household income, smoking status and IPAQ physical activity 
group. Sex-specific reproductive exposures (for example, menopause) 
replicated in the female- and male-only XWAS analyses were also tested 
as exposures in analyses of sex-specific chronic disease outcomes 
(breast, ovarian and prostate cancer).

For common disease risk factors (obesity, hypertension and dys-
lipidemia), we serially assessed each exposure and risk factor pair 
using cross-sectional logistic regression models adjusted for age, sex, 
assessment center, household income, years of education, ethnicity, 
smoking status and IPAQ physical activity level.

Across all biomarker, chronic disease, and common disease risk 
factor analyses, P values were corrected separately for each outcome 
using FDR.

Calculating PRS
Where possible, we used multiancestry PRS that were previously made 
available by the UKB (Supplementary Table 11). Methods for deriving 
these PRS are described elsewhere47. For cancer outcomes where no 
PRS were provided by the UKB, we identified recent PRS from the Poly-
genic Score (PGS) catalog48, selecting scores derived in predominantly 
European populations that did not overlap with the UKB cohort (as 
no multiancestry scores were available). We calculated these PRS as 
weighted sums, ∑(no. risk alleles × effect size) in the UKB v3 imputed 
genotype data. PGS catalog entries used to calculate PRS were as fol-
lows: leukemia (PGS000077) by Graff et al.49, lung cancer (PGS000078) 
by Graff et al.49, pancreatic cancer (PGS000083) by Graff et al.49, esopha-
geal cancer (PGS002298) by Choi et al.50, COPD score (PGS001788) 
by Wang et al.51, chronic kidney disease (PGS000859) by Mansour Aly 
et al.52, nonalcoholic fatty liver disease (PGS002282) by Schnurr et al.53, 
liver cirrhosis (PGS000726) by Emdin et al.54 and knee osteoarthritis 
(PGS002729) by Sedaghati-Khayat et al.55. All variants in these scores 
met our quality control criteria of imputation information >0.4 and 
minor allele frequency >0.005 in the UKB data. Although these new 
PRS were mostly developed in European populations, we calculated 
the PRS for our full multiancestry sample and accepted the limitation 
that the PRS may be slightly misspecified in non-European participants. 
All PRS were calculated using PLINK version 2.0.

All PRS were coded as quintiles for use in our multivariable models. 
In all multivariable models including PRS variables, we also added an 
additional covariate for genotype array (BiLEVE versus Axiom; field ID 
22000) as well as the first 20 genetic principal components published 
by the UKB (field ID 22009).
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Exposome and polygenic risk multivariable models
For each outcome, five multivariable models were calculated. The 
first only includes age (scaled) and sex in the model (model 1). Model 
2 includes age, sex and the PRS for the outcome, if available (see below 
for more detail). Model 3 includes age, sex and all exposures associ-
ated with the outcome (exposome). Model 4 includes age, sex, expo-
some and PRS. If a PRS was not available for a particular outcome, then 
models 2 and 4 were not calculated for that outcome. Each model was 
validated in the independent Scottish/Welsh dataset (n = 55,676) by 
obtaining the linear predicted values from the models in the English 
dataset and measuring the C-index and R2 for these values in relation 
to the outcome rates in the Scottish/Welsh population. For sex-specific 
outcomes (breast, ovarian and prostate cancers), we also included in 
the exposome all sex-specific exposures that were replicated in the 
female- and male-only mortality XWAS.

The Cox proportional hazards models used for these multivariable 
models differed slightly from those used in previous analyses, instead 
using time in study as the timescale, using recruitment age and sex 
as fixed covariates, and removing the 5-year birth cohort covariate 
from the model given its collinearity with age. In all multivariable Cox 
models, the proportional hazards assumption was tested by examin-
ing the Schoenfeld residuals, and an interaction with time was added 
to any variable with nonproportional hazards. Survival time splitting 
to use for time interactions in these models was performed using the 
timeSplitter function from the Greg R package56, using 2 years as the 
interval for time splitting. Any categorical exposure with less than ten 
outcome cases for one of the response levels was completely excluded 
from all exposome models for that specific outcome. The only excep-
tion was the variable on type of accommodation lived in, where instead 
we recoded all responses of ‘mobile or temporary structure (that is, 
caravan)’ to NA and removed that as a response level from the variable 
(since only a few hundred people endorsed this response level in the 
subset of participants in the multivariable models).

The R2 values for each model were calculated using the CoxR2 
package57 as a measure of explained randomness based on the partial 
likelihood ratio statistic under the Cox proportional hazard model58. 
Following previous guidance59, R2 values were first calculated sepa-
rately within each imputed dataset, converted to r-scale coefficients by 
taking the square root and then converted to the z-scale using Fisher’s 
z transformation. The z-transformed R2 values were then averaged 
across all five imputed datasets. These averaged values were then 
retransformed back to the r-scale using inverse z transformation and 
then squared to return a pooled R2 value. C-index values were also 
pooled using the same method. Relative importance for each variable 
and category of variables within the multivariable models was calcu-
lated using Wald Χ2 statistics via analysis of variance (ANOVA) using 
the rms package in R (ref. 60), where the relative importance of each is 
the proportion of the variable/group Χ2 relative to the total model Χ2.

Ethics approval
UKB data use (project application no. 61054) was approved by the 
UKB according to their established access procedures. The UKB has 
approval from the North West Multi-center research ethics commit-
tee as a Research Tissue Bank, and as such researchers using UKB data 
do not require separate ethical clearance and can operate under the 
Research Tissue Bank approval.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
UKB data are available through a procedure described at https://www.
ukbiobank.ac.uk/enable-your-research. Summary statistics from all 
analysis stages are included in Supplementary Files 3–178. All polygenic 

risk score summary statistics taken from the PGS catalog are publicly 
available at https://www.pgscatalog.org/.

Code availability
R and PLINK code needed to reproduce all analyses, figures and tables 
are publicly available via GitHub at https://github.com/miargentieri/
exposome-aging-ukb.
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Extended Data Fig. 1 | Mortality and disease incidence rates among UK 
Biobank participants. (a) The number of deaths in females and males according 
to age at death (in years) among UK Biobank participants who died during  
follow up (n = 31,716). (b) Numbers of prevalent and incident cases for all  

age-related diseases studied among UK Biobank participants recruited in 
England (n = 436,891). Note that diseases are put into two groups with different 
x-axis scales, since some diseases had far more cases than others.
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Extended Data Fig. 2 | Mortality XWAS associations by different intervals 
of follow up time. Correlation between mortality XWAS regression estimates 
(betas) calculated in the full pooled sample (x-axis; n = 436,891) and the subset  
of participants excluding those who died within the first 4 years of follow up 

(y-axis; n = 431,394). Correlation between betas (Pearson r) is shown, as is the 
p-value for the correlation. A best fit line is fitted by regressing the betas from the 
y-axis onto the betas from the x-axis.
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Extended Data Fig. 3 | Mortality XWAS associations accounting for prevalent 
disease. Correlation between mortality XWAS regression estimates (betas) 
calculated in the full analytic sample (x-axis; n = 436,891) and the subset of 
participants with no disease or poor health at baseline (y-axis; n = 221,067). 

Correlation between betas (Pearson r) is shown, as is the p-value for the 
correlation. A best fit line is fitted by regressing the betas from the y-axis onto the 
betas from the x-axis. Labeled points are those variables that were flagged during 
the disease indicator interaction analysis.
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Extended Data Table 1 | Explained variation and C-index across multivariable models in UK Biobank participants recruited  
in England

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03483-9

Extended Data Table 2 | Explained variation and C-index across multivariable models in UK Biobank participants recruited 
in Scotland/Wales
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